Abstract
Abstract This paper develops a geometric theory which unifies the formulation and evaluation of form (straightness, flatness, cylindricity and circularity), profile and orientation tolerances stipulated in ANSI Y14.5M standard. In the paper, based on an an important observation that a toleranced feature exhibits a symmetry subgroup G0 under the action of the Euclidean group, SE(3), we identify the configuration space of a toleranced (or a symmetric) feature with the homogeneous space SE(3)/G0 of the Euclidean group. Geometric properties of SE(3)/G0, especially its exponential coordinates carried over from that of SE(3), are analyzed. We show that all cases of form, profile and orientation tolerances can be formulated as a minimization or constrained minimization problem on the space SE(3)/G0, with G0 being the symmetry subgroup of the underlying feature. We transform the non-differentiable minimization problem into a differentiable minimization problem over an extended configuration space. Using geometric properties of SE(3)/G0, we derive a sequence of linear programming problems whose solutions can be used to approximate the minimum zone solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.