Abstract
This paper studies a geometric-process maintenance-model for a deteriorating system under a random environment. Assume that the number of random shocks, up to time t, produced by the random environment forms a counting process. Whenever a random shock arrives, the system operating time is reduced. The successive reductions in the system operating time are statistically independent and identically distributed random variables. Assume that the consecutive repair times of the system after failures, form an increasing geometric process; under the condition that the system suffers no random shock, the successive operating times of the system after repairs constitute a decreasing geometric process. A replacement policy N, by which the system is replaced at the time of the failure N, is adopted. An explicit expression for the average cost rate (long-run average cost per unit time) is derived. Then, an optimal replacement policy is determined analytically. As a particular case, a compound Poisson process model is also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.