Abstract

The problem of finding a collision free path in an environment occupied by obstacles, known as path planning, has many applications in design of complex systems such as wire routing in automobile assemblies or motion planning for robots. Developing the visibility graph of the workspace is among the first techniques to address the path-planning problem. The visibility algorithm is efficient in finding the global optimal path. However, it is computationally expensive as it explores the entire workspace of the problem to create all non-intersecting segments of the graph. In this paper, we propose an algorithm based on the notion of convex hulls to generate the partial visibility graph from a given start point to a goal point in a 2D workspace cluttered with a number of disjoint polygonal convex or concave obstacles. The algorithm facilitates the attainment of the shortest path in a planar workspace while reducing the size of the visibility graph to explore.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call