Abstract

The discontinuous Petrov–Galerkin (DPG) methodology of Demkowicz and Gopalakrishnan (2010, 2011) guarantees the optimality of the solution in an energy norm, and provides several features facilitating adaptive schemes. A key question that has not yet been answered in general – though there are some results for Poisson, e.g.– is how best to precondition the DPG system matrix, so that iterative solvers may be used to allow solution of large-scale problems.In this paper, we detail a strategy for preconditioning the DPG system matrix using geometric multigrid which we have implemented as part of Camellia (Roberts, 2014, 2016), and demonstrate through numerical experiments its effectiveness in the context of several variational formulations. We observe that in some of our experiments, the behavior of the preconditioner is closely tied to the discrete test space enrichment.We include experiments involving adaptive meshes with hanging nodes for lid-driven cavity flow, demonstrating that the preconditioners can be applied in the context of challenging problems. We also include a scalability study demonstrating that the approach – and our implementation – scales well to many MPI ranks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.