Abstract

Estimating joint stiffness is of paramount importance for studying human motor control and for clinical assessment of neurological diseases. Usually stiffness estimation is performed using cumbersome instrumentations (e.g. robots), and by approximating robot joint angles and torques to the human ones. This paper proposes a methodology and an experimental setup to measure wrist joint stiffness in unstructured environments, with the twofold aim of: 1) providing a geometric framework in order to derive angular displacements and torques at the wrist Flexion/Extension (FE) and Radial/Ulnar Deviation (RUD) axes of rotation, using a subject specific kinematic model; 2) suggesting an experimental setup made of two portable sensors for motion tracking and one load cell, to allow for measurements in out-of-the-lab scenarios. We tested our method on a hardware mockup of wrist kinematics, providing a ground truth for estimated angles and torques at FE and RUD joints. The experimental validation showed average absolute errors in FE and RUD angles of 0.005 rad and 0.0167 rad respectively, and an average error of FE and RUD torques of 0.006 Nm and 0.003 Nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.