Abstract
A geometric framework for the automatic extraction of channels and channel networks from high‐resolution digital elevation data is introduced in this paper. The proposed approach incorporates nonlinear diffusion for the preprocessing of the data, both to remove noise and to enhance features that are critical to the network extraction. Following this preprocessing, channels are defined as curves of minimal effort, or geodesics, where the effort is measured on the basis of fundamental geomorphological characteristics such as flow accumulation area and isoheight contours curvature. The merits of the proposed methodology, and especially the computational efficiency and accurate localization of the extracted channels, are demonstrated using light detection and ranging (lidar) data of the Skunk Creek, a tributary of the South Fork Eel River basin in northern California.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.