Abstract

A direct formulation of linear elasticity of cell complexes based on discrete exterior calculus is presented. The primary unknowns are displacements, represented by a primal vector-valued 0-cochain. Displacement differences and internal forces are represented by a primal vector-valued 1-cochain and a dual vector-valued 2-cochain, respectively. The macroscopic constitutive relation is enforced at primal 0-cells with the help of musical isomorphisms mapping cochains to smooth fields and vice versa. The balance of linear momentum is established at primal 0-cells. The governing equations are solved as a Poisson’s equation with a non-local and non-diagonal material Hodge star. Numerical simulations of several classical problems with analytic solutions are presented to validate the formulation. Excellent agreement with known solutions is obtained. The formulation provides a method to calculate the relations between displacement differences and internal forces for any lattice structure, when the structure is required to follow a prescribed macroscopic elastic behaviour. This is also the first and critical step in developing formulations for dissipative processes in cell complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.