Abstract

The aim of this paper is to give a geometric characterization of the finite generation of the Cox rings of anticanonical rational surfaces. This characterization is encoded in the finite generation of the effective monoid. Furthermore, we prove that in the case of a smooth projective rational surface having a negative multiple of its canonical divisor with only two linearly independent global sections (e.g., an elliptic rational surface), the finite generation is equivalent to the fact that there are only a finite number of smooth projective rational curves of self-intersection −1. The ground field is assumed to be algebraically closed of arbitrary characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.