Abstract

We consider the Berglund-Hubsch transpose of a bimodal invertible polynomial and construct a triangulated category associated to the compactification of a suitable deformation of the singularity. This is done in such a way that the corresponding Grothendieck group with the (negative) Euler form can be described by a graph which corresponds to the Coxeter-Dynkin diagram with respect to a distinguished basis of vanishing cycles of the bimodal singularity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.