Abstract
An important category of solutions to reaction-diffusion systems of partial differential equations is given by traveling fronts, which provide a monotonic connection between rest states and maintain a fixed profile when considered in a co-moving frame. Reaction-diffusion equations are frequently employed in the mean-field (continuum) approximation of discrete (many-particle) models; however, the quality of this approximation deteriorates when the number of particles is not sufficiently large. The (stochastic) effects of this discreteness have been modeled via the introduction of (deterministic) 'cut-offs' that effectively deactivate the reaction terms at points where the particle concentration is below a certain threshold. In this article, we present an overview of the effects of such a cut-off on the front propagation dynamics in a prototypical reaction-diffusion system, the classical Nagumo equation. Our analysis is based on the method of geometric desingularization ('blow-up'), in combination with dynamical systems techniques such as invariant manifolds and normal forms. Using these techniques, we categorize front propagation in the cut-off Nagumo equation in dependence of a control parameter, and we classify the corresponding propagation regimes ('pulled,' 'pushed,' and 'bistable') in terms of the bifurcation structure of a projectivized system of equations that is obtained from the original traveling front problem, after blow-up. In particular, our approach allows us to determine rigorously the asymptotics (in the cut-off parameter) of the correction to the front propagation speed in the Nagumo equation that is due to a cut-off. Moreover, it explains the structure of that asymptotics (logarithmic, superlinear, or sublinear) in dependence of the front propagation regime. Finally, it enables us to calculate the corresponding leading-order coefficients in the resulting expansions in closed form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.