Abstract
<abstract><p>In this paper, we prove that associated with a sub-static asymptotically flat manifold endowed with a harmonic potential there is a one-parameter family $ \{F_{\beta}\} $ of functions which are monotone along the level-set flow of the potential. Such monotonicity holds up to the optimal threshold $ \beta = \frac{n-2}{n-1} $ and allows us to prove a geometric capacitary inequality where the capacity of the horizon plays the same role as the ADM mass in the celebrated Riemannian Penrose Inequality.</p></abstract>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.