Abstract

In this work, we have proposed a new geometrical method for calculating the critical temperature and critical exponents by introducing a set of bond breaking probability values. The probability value Pc corresponding to the Coniglio–Klein probability for the transition temperature is obtained among this set of trial probabilities. Critical temperature, thermal and magnetic exponents are presented for d = 2 and d = 3, q = 2 Potts model and for the application of the method to the system with first order phase transition, q = 7 Potts model on different size lattices are employed. The advantage of this method can be that the bond breaking probability can be applied, where the clusters are defined on a set of dynamic variables, which are different from the dynamic quantities of the actual Hamiltonian or the action of the full system. An immediate application can be to use the method on finite temperature lattice gauge theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.