Abstract

SummaryIn this article, a solution to target convergence and obstacle avoidance problem of an underactuated nonstandard n‐trailer robot is proposed. With a new geometric approach, we propose autonomous velocity and steering angle controllers for the car‐like tractor robot such that the tractor‐trailer system moves from an initial position to a designated target. The proposed method simultaneously takes into account the dynamics constraints of the system and also ensures that the robot avoids any fixed obstacles on its way to the target. We also generalize the results to control the motion of the nonstandard n‐trailer system with an arbitrary number of passive trailers, a mathematically challenging nonlinear underactuated system, given that the angular velocity of a trailer is dependent on the angular velocity of the preceding trailer. The effectiveness of the new geometric approach and the stabilizing control inputs is verified using computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.