Abstract
In this work a new algorithm is derived for the onboard calibration of three-axis strapdown magnetometers. The proposed calibration method is written in the sensor frame, and compensates for the combined effect of all linear time-invariant distortions, namely soft iron, hard iron, sensor non-orthogonality, bias, among others. A Maximum Likelihood Estimator (MLE) is formulated to iteratively find the optimal calibration parameters that best fit to the onboard sensor readings, without requiring external attitude references. It is shown that the proposed calibration technique is equivalent to the estimation of an ellipsoidal surface, and that the sensor alignment matrix is given by the solution of the orthogonal Procrustes problem. Good initial conditions for the iterative algorithm are obtained by a suboptimal batch least squares computation. Simulation and experimental results with low-cost sensors data are presented, supporting the application of the algorithm to autonomous vehicles and other robotic platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.