Abstract

The Lyapunov-Schmidt reduction technique is used to prove a persistence theorem for fixed points of a parameterized family of maps. This theorem is specialized to give a method for detecting the existence of persistent periodic solutions of perturbed systems of differential equations. In turn, this specialization is applied to prove the existence of many hyperbolic periodic solutions of a steady state solution of Euler’s hydrodynamic partial differential equations. Incidentally, using recent results of S. Friedlander and M. M. Vishik, the existence of hyperbolic periodic orbits implies the steady state solutions of the Eulerian partial differential equation are hydrodynamically unstable. In addition, a class of the steady state solutions of Euler’s equations are shown to exhibit chaos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.