Abstract
The paper introduces the generalized coherence (GC) estimate and examines its application as a statistic for detecting the presence of a common but unknown signal on several noisy channels. The GC estimate is developed as a natural generalization of the magnitude-squared coherence (MSC) estimate-a widely used statistic for nonparametric detection of a common signal on two noisy channels. The geometrical nature of the GC estimate is exploited to derive its distribution under the H/sub 0/ hypothesis that the data channels contain independent white Gaussian noise sequences. Detection thresholds corresponding to a range of false alarm probabilities are calculated from this distribution. The relationship of the H/sub 0/ distribution of the GC estimate to that of the determinant of a complex Wishart-distributed matrix is noted. The detection performance of the three-channel GC estimate is evaluated by simulation using a white Gaussian signal sequence in white Gaussian noise. Its performance is compared with that of the multiple coherence (MC) estimate, another nonparametric multiple-channel detection statistic. The GC approach is found to provide better detection performance than the MC approach in terms of the minimum signal-to-noise ratio on all data channels necessary to achieve desired combinations of detection and false alarm probabilities. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.