Abstract

In this article, we consider the problem of estimating the eigenvalues and eigenfunctions of the covariance kernel (i.e., the functional principal components) from sparse and irregularly observed longitudinal data. We exploit the smoothness of the eigenfunctions to reduce dimensionality by restricting them to a lower dimensional space of smooth functions. We then approach this problem through a restricted maximum likelihood method. The estimation scheme is based on a Newton–Raphson procedure on the Stiefel manifold using the fact that the basis coefficient matrix for representing the eigenfunctions has orthonormal columns. We also address the selection of the number of basis functions, as well as that of the dimension of the covariance kernel by a second-order approximation to the leave-one-curve-out cross-validation score that is computationally very efficient. The effectiveness of our procedure is demonstrated by simulation studies and an application to a CD4+ counts dataset. In the simulation studies, our method performs well on both estimation and model selection. It also outperforms two existing approaches: one based on a local polynomial smoothing, and another using an EM algorithm. Supplementary materials including technical details, the R package fpca, and data analyzed by this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.