Abstract

A central task of computer vision is to automatically recognize objects in real-world scenes. The parameters defining image and object spaces can vary due to lighting conditions, camera calibration and viewing position. It is therefore desirable to look for geometric properties of the object which remain invariant under such changes in the observation parameters. The study of such geometric invariance is a field of active research. This paper presents the theory and computation of projective invariants formed from points and lines using the geometric algebra framework. This work shows that geometric algebra is a very elegant language for expressing projective invariants using n views. The paper compares projective invariants involving two and three cameras using simulated and real images. Illustrations of the application of such projective invariants in visual guided grasping, camera self-localization and reconstruction of shape and motion complement the experimental part.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.