Abstract

This work uses classic stochastic dynamic programming techniques to determine the equivalence premium that each of two extraction agents of a non-renewable natural resource must pay to an insurer to cover the risk that the extraction pore explodes. We use statistical and geological methods to calibrate the time-until-failure distribution of extraction status for each agent and couple a simple approximation scheme with the actuarial standard of Bühlmann’s recommendations to charge the extracting agents a variance premium, while the insurer earns a return on its investment at risk. We test our analytical results through Monte Carlo simulations to verify that the probability of ruin does not exceed a certain predetermined level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.