Abstract

The Tropical Andes region includes biodiversity hotspots of high conservation priority whose management strategies depend on the analysis of forest dynamics drivers (FDDs). These depend on complex social and ecological interactions that manifest on different space-time scales and are commonly evaluated through regression analysis of multivariate datasets. However, processing such datasets is challenging, especially when time series are used and inconsistencies in data collection complicate their integration. Moreover, regression analysis in FDD characterization has been criticized for failing to capture spatial variability; therefore, alternatives such as geographically weighted regression (GWR) have been proposed, but their sensitivity to multicollinearity has not yet been solved. In this scenario, we present an innovative methodology that combines techniques to: 1) derive remote sensing time series products; 2) improve census processing with dasymetric mapping; 3) combine GWR and random forest (RF) to derive local variables importance; and 4) report results based in a clustering and hypothesis testing. We applied this methodology in the northwestern Ecuadorian Amazon, a highly heterogeneous region characterized by different active fronts of deforestation and reforestation, within the time period 2000-2010. Our objective was to identify linkages between these processes and validate the potential of the proposed methodology. Our findings indicate that land-use intensity proxies can be extracted from remote sensing time series, while intercensal analysis can be facilitated by calculating population density maps. Moreover, our implementation of GWR with RF achieved accurate predictions above the 74% using the out-of-bag samples, demonstrating that derived RF features can be used to construct hypothesis and discuss forest change drivers with more detailed information. In the other hand, our analysis revealed contrasting effects between deforestation and reforestation for variables related to suitability to agriculture and accessibility to its facilities, which is also reflected according patch size, land cover and population dynamics patterns. This approach demonstrates the benefits of integrating remote sensing-derived products and socioeconomic data to understand coupled socioecological systems more from a local than a global scale.

Highlights

  • The Tropical Andes is a mountainous region at the base of the Andes ridge

  • We present an innovative methodology that combines techniques to: 1) derive remote sensing time series products; 2) improve census processing with dasymetric mapping; 3) combine geographically weighted regression (GWR) and random forest (RF) to derive local variables importance; and 4) report results based in a clustering and hypothesis testing

  • Since the proposed algorithm involves multiple steps, we summarized them as a pseudocode: Algorithm 1: Geographically weighted random forest (GWRF) INPUTS Sp: spatial dataset; Dep: dependent variable name; Kfun: kernel function;Ktyp: kernel type; Kbw: kernel bandwidth; OUTPUTS LVI:variables importance; YHAT: prediction probabilities; ACC: accuracy metrics; PROCEDURE 1: READ Sp; SET Dep as dependent variable; SET Outputs as an empty list FOR each i element IN Sp DO

Read more

Summary

Introduction

The Tropical Andes is a mountainous region at the base of the Andes ridge. Due to its altitudinal gradient, it is characterized by 23 ecoregions and 8 bioregions [1], and it provides important economic and ecological services to almost 40 million inhabitants [2]. Large-scale reforestation has been detected in some areas of Latin America [8], especially along old colonization fronts [9] These areas are less studied or understood, and their role in forest recovery and restoration of important environmental services is ignored [10,11]. Analyzing forest dynamics drivers (FDDs), i.e., deforestation and reforestation, in the Tropical Andes is very important for conservation, climate change adaptation, and sustainability. This knowledge is decisive for countries like Ecuador, where most of the remaining native forests are located and deforestation rates have been the highest in South America for some years [12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.