Abstract

Anhydrous MgSO4 is considered as a potential sealing material for the isolation of high‐level‐waste repositories in salt rock. When an aqueous solution, usually a brine type, penetrates the sealing, different MgSO4 hydrates along with other mineral phases form, removing free water from the solution. The uptake of water leads to an overall increase of solid phase volume. If deformation is constrained, the pore volume decreases and permeability is reduced. In order to simulate such processes, especially for conditions without free water, a coupling between OpenGeoSys and thermodynamic equilibrium calculations were implemented on the basis of the commercially available thermodynamic simulator ChemApp and the object‐oriented programming finite‐element method simulator OpenGeoSys. ChemApp uses the Gibbs energy minimization approach for the geochemical reaction simulation. Based on this method, the thermodynamic equilibrium of geochemical reactions can be calculated by giving the amount of each system component and the molar Gibbs energy of formation for all the possible phases and phase constituents. Activity coefficients in high‐saline solutions were calculated using the Pitzer formalism. This model has the potential to handle 1‐D, 2‐D, and 3‐D saturated and nonsaturated thermo‐hydro‐chemical coupled processes even with highly saline solutions under complex conditions. The model was verified by numerical comparison with other simulators and applied for the modeling of SVV experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.