Abstract

In mountainous regions containing extensive glacier systems there is a lack of suitable material for conventional geochemical sampling. As a result, in most geochemical sampling programs a few stream-sediment samples collected at, or near, the terminus of valley glaciers are used to evaluate the mineral potential of the glaciated area. We have developed and tested a technique which utilizes the medial moraines of valley glaciers for systematic geochemical exploration of the glacial catchment area. Moraine sampling provides geochemical information that is site-specific in that geochemical anomalies can be traced directly up-ice to bedrock sources. Traverses were made across the Trident and Susitna glaciers in the central Alaska Range where fine-grained (clay to sand size) samples were collected from each medial moraine. These samples were prepared and chemically analyzed to determine the concentration of specific elements. Fifty pebbles were collected at each moraine for archival purposes and for subsequent lithologic identification. Additionally, fifty cobbles and fifty boulders were examined and described at each sample site to determine the nature and abundance of lithologies present in the catchment area, the extent and nature of visible mineralization, the presence and intensity of hydrothermal alteration and the existence of veins, dikes and other minor structural features. Results from the central Alaska Range have delineated four distinct multi-element anomalies which are a response to potential mineralization up-ice from the medial moraine traverse. By integrating the lithologic, mineralogical and geochemical data the probable geological setting of the geochemical anomalies is determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.