Abstract

AbstractField measurements of apparent geochemical weathering reaction rates in subsurface fractured porous media are known to deviate from laboratory measurements by multiple orders of magnitude. To date, there is no geologically based explanation for this discrepancy that can be used to predict reaction rates in field systems. Proposed correction factors are typically based on ad hoc characterizations related to geochemical kinetic models. Through a series of high‐fidelity reactive transport simulations of mineral dissolution within explicit 3D discrete fracture networks, we are able to link the geo‐structural attributes with reactive transport observations. We develop a correction factor to linear transition state theory for the prediction of the apparent dissolution rate based on measurable geological properties. The modified rate law shows excellent agreement with numerical simulations, indicating that geological structure could be a primary reason for the discrepancy between laboratory and field observations of apparent dissolution rates in fractured media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.