Abstract
Western North America has been experiencing persistent drought exacerbated by climate change for over two decades. This extreme climate event is a clear threat to native plant communities. Artemisia tridentata is a keystone shrub species in western North America and is threatened by climate change, urbanization, and wildfire. A drought Genotype × Environment (G × E) experiment was conducted to assess phenotypic plasticity and differential gene expression in A. tridentata. The G × E experiment was performed on diploid A. tridentata seedlings from two populations (one from Idaho, USA and one from Utah, USA), which experience differing levels of drought stress during the summer months. Photosynthetic data, leaf temperature, and gene expression levels were compared between treatments and populations. The Utah population maintained higher photosynthetic rates and photosynthetic efficiency than the Idaho population under drought stress. The Utah population also exhibited far greater transcriptional plasticity than the Idaho population and expressed genes of response pathways distinct from those of the Idaho population. Populations of A. tridentata differ greatly in their drought response pathways, likely due to differences in response pathways that have evolved under distinct climatic regimes. Epigenetic processes likely contribute to the observed differences between the populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.