Abstract

Migratory animals are declining worldwide and coordinated conservation efforts are needed to reverse current trends. We devised a novel genoscape-network model that combines genetic analyses with species distribution modeling and demographic data to overcome challenges with conceptualizing alternative risk factors in migratory species across their full annual cycle. We applied our method to the long distance, Neotropical migratory bird, Wilson's Warbler (Cardellina pusilla). Despite a lack of data from some wintering locations, we demonstrated how the results can be used to help prioritize conservation of breeding and wintering areas. For example, we showed that when genetic, demographic, and network modeling results were considered together it became clear that conservation recommendations will differ depending on whether the goal is to preserve unique genetic lineages or the largest number of birds per unit area. More specifically, if preservation of genetic lineages is the goal, then limited resources should be focused on preserving habitat in the California Sierra, Basin Rockies, or Coastal California, where the 3 most vulnerable genetic lineages breed, or in western Mexico, where 2 of the 3 most vulnerable lineages overwinter. Alternatively, if preservation of the largest number of individuals per unit area is the goal, then limited conservation dollars should be placed in the Pacific Northwest or Central America, where densities are estimated to be the highest. Overall, our results demonstrated the utility of adopting a genetically based network model for integrating multiple types of data across vast geographic scales and better inform conservation decision-making for migratory animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call