Abstract
Tumor mutational burden (TMB) is associated with clinical response to immunotherapy, but application has been limited to a subset of cancer patients. We hypothesized that advanced machine-learning and proper modeling could identify mutations that classify patients most likely to derive clinical benefits. Training data: Two sets of public whole-exome sequencing (WES) data for metastatic melanoma. Validation data: One set of public non-small cell lung cancer (NSCLC) data. Least Absolute Shrinkage and Selection Operator (LASSO) machine-learning and proper modeling were used to identify a set of mutations (biomarker) with maximum predictive accuracy (measured by AUROC). Kaplan–Meier and log-rank methods were used to test prediction of overall survival. The initial model considered 2139 mutations. After pruning, 161 mutations (11%) were retained. An optimal threshold of 0.41 divided patients into high-weight (HW) or low-weight (LW) TMB groups. Classification for HW-TMB was 100% (AUROC = 1.0) on melanoma learning/testing data; HW-TMB was a prognostic marker for longer overall survival. In validation data, HW-TMB was associated with survival (p = 0.0057) and predicted 6-month clinical benefit (AUROC = 0.83) in NSCLC. In conclusion, we developed and validated a 161-mutation genomic signature with “outstanding” 100% accuracy to classify melanoma patients by likelihood of response to immunotherapy. This biomarker can be adapted for clinical practice to improve cancer treatment and care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.