Abstract

BackgroundThe 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4).MethodsIn order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory.ResultsAmong others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses.ConclusionsThis study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses.

Highlights

  • The 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus

  • All work with infectious EBOV was performed in the biosafety level (BSL) 4 laboratory at the Rocky Mountain Laboratories (RML), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), following approved standard operating procedures

  • Since work with infectious EBOV is restricted to BSL 4 laboratories, we endeavored to use a minigenome assay, which models EBOV genome replication and transcription under BSL 2 conditions (Fig. 1a)

Read more

Summary

Introduction

The 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Human-pathogenic ebolaviruses (Ebola virus (EBOV, species Zaire ebolavirus), Sudan virus (species Sudan ebolavirus), Taï Forest virus (species Taï Forest ebolavirus), and the recently identified Bundibugyo virus (species Bundibugyo ebolavirus)) are all found in Central and West Africa, while the human apathogenic Reston virus (species Reston ebolavirus) is found in South East Asia [2] Another apparently apathogenic filovirus, Lloviu virus, has been suggested to be present in Europe [3, 4]. The most promising current strategies consist of monoclonal antibody cocktails [7] While these approaches are extremely promising in non-human primate models of Ebola virus disease [8], they are most likely only effective against a single virus species. From an economic point of view, such broad-spectrum therapies would be much more attractive to develop clinically than single virus approaches

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call