Abstract

BackgroundA genome-wide search for genes that predispose to type 1 diabetes using linkage analysis was performed using 900 microsatellite markers in 70 nuclear families with affected siblings from Finland, a population expected to be more genetically homogeneous than others, and having the highest incidence of type 1 diabetes in the world and, yet, the highest proportion in Europe of cases (10%) carrying neither of the highest risk HLA haplotypes that include DR3 or DR4 alleles.ResultsIn addition to the evidence of linkage to the HLA region on 6p21 (nominal p = 4.0 × 10-6), significant evidence of linkage in other chromosome regions was not detected with a single-locus analysis. The two-locus analysis conditional on the HLA gave a maximum lod score (MLS) of 3.1 (nominal p = 2 × 10-4) on chromosome 9p13 under an additive model; MLS of 2.1 (nominal p = 6.1 × 10-3) on chromosome 17p12 and MLS of 2.5 (nominal p = 2.9 × 10-3) on chromosome 18p11 under a general model.ConclusionOur genome scan data confirmed the primary contribution of the HLA genes also in the high-risk Finnish population, and suggest that non-HLA genes also contribute to the familial clustering of type 1 diabetes in Finland.

Highlights

  • A genome-wide search for genes that predispose to type 1 diabetes using linkage analysis was performed using 900 microsatellite markers in 70 nuclear families with affected siblings from Finland, a population expected to be more genetically homogeneous than others, and having the highest incidence of type 1 diabetes in the world and, yet, the highest proportion in Europe of cases (10%) carrying neither of the highest risk HLA haplotypes that include DR3 or DR4 alleles

  • The highest maximum lod score (MLS) was at chromosome 6p21, the HLA region where the major type 1 diabetes susceptibility gene(s) locates

  • For the two-locus analysis, we fixed markers with highest MLS at the HLA region to adjust for the effect of HLA

Read more

Summary

Introduction

A genome-wide search for genes that predispose to type 1 diabetes using linkage analysis was performed using 900 microsatellite markers in 70 nuclear families with affected siblings from Finland, a population expected to be more genetically homogeneous than others, and having the highest incidence of type 1 diabetes in the world and, yet, the highest proportion in Europe of cases (10%) carrying neither of the highest risk HLA haplotypes that include DR3 or DR4 alleles. The observation of familial clustering of type 1 diabetes suggests that genetic factors are involved in the etiology of type 1 diabetes. Type 1 diabetes is about 15 times (6/0.4) more common in siblings of type 1 diabetic patients than in the general population. The high discordance between MZ twins, suggests that the penetrance of the type 1 susceptibility genes is low

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.