Abstract

Plasma HDL cholesterol levels (HDL-C) are an independent predictor of coronary artery disease (CAD). We have completed a genome-wide linkage scan for HDL-C in a US cohort consisting of 388 multiplex families with premature CAD (GeneQuest). The heritability of HDL-C in GeneQuest was 0.37 with gender and age as covariates (P = 5.1 x 10(-4)). Two major quantitative trait loci (QTL) for log-transformed HDL-C adjusted for age and gender were identified onto chromosomes 7p22 and 15q25 with maximum multipoint logarithm of odds (LOD) scores of 3.76 and 6.69, respectively. Fine mapping decreased the 7p22 LOD score to a nonsignificant level of 3.09 and split the 15q25 QTL into two loci, one minor QTL on 15q22 (LOD = 2.73) that spanned the LIPC gene, and the other at 15q25 (LOD = 5.63). A family-based quantitative transmission disequilibrium test (QTDT) revealed significant association between variant rs1800588 in LIPC and HDL-C in the GeneQuest population (P = 0.0067), which may account for the minor QTL on 15q22. The 15q25 QTL is the most significant locus identified for HDL-C to date, and these results provide a framework for the ultimate identification of the underlying HDL-C variant and gene on chromosomes 15q25, which will provide insights into novel regulatory mechanisms of HDL-C metabolism.

Highlights

  • Plasma HDL cholesterol levels (HDL-C) are an independent predictor of coronary artery disease (CAD)

  • To the best of our knowledge, the 15q25 quantitative trait loci (QTL) is the most significant locus identified for HDL-C to date

  • We have completed a genome-wide linkage analysis to identify QTLs for plasma HDL-C levels in a well-characterized US cohort consisting of multiplex families (GeneQuest)

Read more

Summary

Introduction

Plasma HDL cholesterol levels (HDL-C) are an independent predictor of coronary artery disease (CAD). We have completed a genome-wide linkage scan for HDL-C in a US cohort consisting of 388 multiplex families with premature CAD (GeneQuest). Two major quantitative trait loci (QTL) for logtransformed HDL-C adjusted for age and gender were identified onto chromosomes 7p22 and 15q25 with maximum multipoint logarithm of odds (LOD) scores of 3.76 and 6.69, respectively. A family-based quantitative transmission disequilibrium test (QTDT) revealed significant association between variant rs1800588 in LIPC and HDL-C in the GeneQuest population (P = 0.0067), which may account for the minor QTL on 15q22. A genome-wide linkage scan identifies multiple quantitative trait loci for HDL-cholesterol levels in families with premature CAD and MI. Coronary artery disease (CAD) and its principal clinical complication of acute myocardial infarction (MI) represent the most important causes of death and disability in the developed world. The lifetime risk of developing CAD after age 40 is 49% for men and 32% for women [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.