Abstract
Pleiotropy is a phenomenon that a single gene inflicts multiple correlated phenotypic effects, often characterized as traits, involving multiple biological systems. We propose a two-stage method to identify pleiotropic effects on multiple longitudinal traits from a family-based data set. The first stage analyzes each longitudinal trait via a three-level mixed-effects model. Random effects at the subject-level and at the family-level measure the subject-specific genetic effects and between-subjects intraclass correlations within families, respectively. The second stage performs a simultaneous association test between a single nucleotide polymorphism and all subject-specific effects for multiple longitudinal traits. This is performed using a quasi-likelihood scoring method in which the correlation structure among related subjects is adjusted. Two simulation studies for the proposed method are undertaken to assess both the type I error control and the power. Furthermore, we demonstrate the utility of the two-stage method in identifying pleiotropic genes or loci by analyzing the Genetic Analysis Workshop 16 Problem 2 cohort data drawn from the Framingham Heart Study and illustrate an example of the kind of complexity in data that can be handled by the proposed approach. We establish that our two-stage method can identify pleiotropic effects whilst accommodating varying data types in the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.