Abstract

BackgroundFeather pecking and aggressive pecking in laying hens are serious economic and welfare issues. In spite of extensive research on feather pecking during the last decades, the motivation for this behavior is still not clear. A small to moderate heritability has frequently been reported for these traits. Recently, we identified several single-nucleotide polymorphisms (SNPs) associated with feather pecking by mapping selection signatures in two divergent feather pecking lines. Here, we performed a genome-wide association analysis (GWAS) for feather pecking and aggressive pecking behavior, then combined the results with those from the recent selection signature experiment, and linked them to those obtained from a differential gene expression study.MethodsA large F2 cross of 960 F2 hens was generated using the divergent lines as founders. Hens were phenotyped for feather pecks delivered (FPD), aggressive pecks delivered (APD), and aggressive pecks received (APR). Individuals were genotyped with the Illumina 60K chicken Infinium iSelect chip. After data filtering, 29,376 SNPs remained for analyses. Single-marker GWAS was performed using a Poisson model. The results were combined with those from the selection signature experiment using Fisher’s combined probability test.ResultsNumerous significant SNPs were identified for all traits but with low false discovery rates. Nearly all significant SNPs were located in clusters that spanned a maximum of 3 Mb and included at least two significant SNPs. For FPD, four clusters were identified, which increased to 13 based on the meta-analysis (FPDmeta). Seven clusters were identified for APD and three for APR. Eight genes (of the 750 investigated genes located in the FPDmeta clusters) were significantly differentially-expressed in the brain of hens from both lines. One gene, SLC12A9, and the positional candidate gene for APD, GNG2, may be linked to the monomanine signaling pathway, which is involved in feather pecking and aggressive behavior.ConclusionsCombining the results from the GWAS with those of the selection signature experiment substantially increased the statistical power. The behavioral traits were controlled by many genes with small effects and no single SNP had effects large enough to justify its use in marker-assisted selection.

Highlights

  • Feather pecking and aggressive pecking in laying hens are serious economic and welfare issues

  • The analysis provided genome-wide significant single-nucleotide polymorphisms (SNPs), most of which were located in clusters, which supports the presence of selection signatures

  • This holds true for all nine investigated chromosomes

Read more

Summary

Introduction

Feather pecking and aggressive pecking in laying hens are serious economic and welfare issues. We performed a genome-wide association analysis (GWAS) for feather pecking and aggressive pecking behavior, combined the results with those from the recent selection signature experiment, and linked them to those obtained from a differential gene expression study. While some authors found no correlation between the two behaviors, positive genetic and phenotypic correlations have been reported in lines selected for high and low feather pecking and their F2-crosses [16, 17]. Depending on the definition of the trait, study design, age of hens, statistical model applied, and data collection period, heritability estimates for feather pecking are low to moderate and range from 0.1 to 0.4, while heritability estimates for aggressive pecking range from 0.04 and 0.14 [17,18,19,20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call