Abstract

BackgroundLife at high altitude results in physiological and metabolic challenges that put strong evolutionary pressure on performance due to oxidative stress, UV radiation and other factors dependent on the natural history of the species. To look for genes involved in altitude adaptation in a large herbivore, this study explored genome differentiation between a feral population of Andean horses introduced by the Spanish in the 1500s to the high Andes and their Iberian breed relatives.ResultsUsing allelic genetic models and Fst analyses of ~50 K single nucleotide polymorphisms (SNPs) across the horse genome, 131 candidate genes for altitude adaptation were revealed (Bonferoni of p ≤ 2 × 10–7). Significant signals included the EPAS1 in the hypoxia-induction-pathway (HIF) that was previously discovered in human studies (p = 9.27 × 10-8); validating the approach and emphasizing the importance of this gene to hypoxia adaptation. Strong signals in the cytochrome P450 3A gene family (p = 1.5 ×10-8) indicate that other factors, such as highly endemic vegetation in altitude environments are also important in adaptation. Signals in tenuerin 2 (TENM2, p = 7.9 × 10-14) along with several other genes in the nervous system (gene categories representation p = 5.1 × 10-5) indicate the nervous system is important in altitude adaptation.ConclusionsIn this study of a large introduced herbivore, it becomes apparent that some gene pathways, such as the HIF pathway are universally important for high altitude adaptation in mammals, but several others may be selected upon based on the natural history of a species and the unique ecology of the altitude environment.

Highlights

  • Life at high altitude results in physiological and metabolic challenges that put strong evolutionary pressure on performance due to oxidative stress, UV radiation and other factors dependent on the natural history of the species

  • Understanding patterns and timing of genetic adaptations through organisms of different life histories is important to elucidate the commonalities in unique adaptation pathways that occur in extreme environments

  • This study explores which genomic regions appear to be under selection in the Andean horse, and how these genes relate to previous studies and to the natural history of the horse and the páramo

Read more

Summary

Introduction

Life at high altitude results in physiological and metabolic challenges that put strong evolutionary pressure on performance due to oxidative stress, UV radiation and other factors dependent on the natural history of the species. Extreme temperature and humidity fluctuation, highly endemic vegetation and fauna, and other biological factors relative to a species’ natural history, such as length or timing of the breeding season or level of population isolation can create strong adaptive pressure. Most herds have been extirpated, small groups called the párameros or cerreros persist in Ecuador’s eastern range between the Cotopaxi volcano and Quilindaña. These horses came predominantly from Andalusia, and had a mixture of Jennet, Andalusia, and Berber ancestry. They quickly adapted to the Andes, interbreeding naturally in small bands in isolation [1], with the consequence that they present an ideal natural experiment in adaptation to high altitude conditions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.