Abstract

Alzheimer's disease (AD) is known to be caused by amyloid β-peptide (Aβ) misfolded into β-sheets, but this knowledge has not yet led to treatments to prevent AD. To identify novel molecular players in Aβ toxicity, we carried out a genome-wide screen in Saccharomyces cerevisiae, using a library of 5154 gene knock-out strains expressing Aβ1-42. We identified 81 mammalian orthologue genes that enhance Aβ1-42 toxicity, while 157 were protective. Next, we performed interactome and text-mining studies to increase the number of genes and to identify the main cellular functions affected by Aβ oligomers (oAβ). We found that the most affected cellular functions were calcium regulation, protein translation and mitochondrial activity. We focused on SURF4, a protein that regulates the store-operated calcium channel (SOCE). An in vitro analysis using human neuroblastoma cells showed that SURF4 silencing induced higher intracellular calcium levels, while its overexpression decreased calcium entry. Furthermore, SURF4 silencing produced a significant reduction in cell death when cells were challenged with oAβ1-42, whereas SURF4 overexpression induced Aβ1-42 cytotoxicity. In summary, we identified new enhancer and protective activities for Aβ toxicity and showed that SURF4 contributes to oAβ1-42 neurotoxicity by decreasing SOCE activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.