Abstract

Prior to initiating symptomatic malaria, a single Plasmodium sporozoite infects a hepatocyte and develops into thousands of merozoites, in part by scavenging host resources, likely delivered by vesicles. Here, we demonstrate that host microtubules (MTs) dynamically reorganize around the developing liver stage (LS) parasite to facilitate vesicular transport to the parasite. Using a genome-wide CRISPR-Cas9 screen, we identified host regulators of cytoskeleton organization, vesicle trafficking, and ER/Golgi stress that regulate LS development. Foci of γ-tubulin localized to the parasite periphery; depletion of centromere protein J (CENPJ), a novel regulator identified in the screen, exacerbated this re-localization and increased infection. We demonstrate that the Golgi acts as a non-centrosomal MT organizing center (ncMTOC) by positioning γ-tubulin and stimulating MT nucleation at parasite periphery. Together, these data support a model where the Plasmodium LS recruits host Golgi to form MT-mediated conduits along which host organelles are recruited to PVM and support parasite development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.