Abstract

The crucial role of phosphate (Pi) for plant alongside the expected depletion of non-renewable phosphate rock have created an urgent need for phosphate-efficient rice varieties. In this study, 157 greenhouse-grown Vietnamese rice landraces were treated under Pi-deficient conditions to discover the genotypic variation among biochemical traits, including relative efficiency of phosphorus use (REP), relative root to shoot weight ratio (RRSR), relative physiological phosphate use efficiency (RPPUE), and relative phosphate uptake efficiency (RPUpE). Plants were grown in Yoshida nutrient media with either a full (320μM) or a low Pi supply (10μM) over six weeks. This genome-wide association study led to the discovery of 31 significant single nucleotide polymorphisms, 18 quantitative trait loci (QTLs), and 85 candidate genes. A common QTL named qRPUUE9.16 was found among thethree investigated traits. Some interesting candidate genes, such as PLASMA MEMBRANE PROTEIN1 (OsPM1), CALMODULIN-RELATED CALCIUM SENSOR PROTEIN 15 (OsCML15), phosphatases 2C (PP2C), STRESS-ACTIVATED PROTEIN KINASE (OsSAPK2), and GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASES (GDPD13), were found strongly correlated to the Pi starvation. RNA sequencing transcriptomes revealed that 45 out of 85 candidate genes were significantly regulated under Pi starvation. Furthermore, nearly two-thirds of genotypes did not possess the OsPsTOL1 gene; however, no significant difference was observed in response to Pi deficiency between genotypes with or without this gene, suggesting that other QTLs in rice may resist Pi starvation. These results provide new information on the genetics of nutrient use efficiency in rice and may potentially assist with developing more phosphate-efficient rice plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.