Abstract

Salmonella enterica serovar Agona is an important zoonotic pathogen, causing serious human illness worldwide, but knowledge about its genetics and evolution, especially regarding the genomic events that might have contributed to the formation of S. Agona as an important pathogen, is lacking. As a first step toward understanding this pathogen and characterizing its genomic differences with other salmonellae, we constructed a physical map of S. Agona in strain SARB1 using I-CeuI, XbaI, AvrII and Tn10 insertions with pulsed-field gel electrophoresis techniques. On the 4815-kb genomic map, we located 82 genes, revealed one inversion of about 1000 kb and resolved seven deletions and seven insertions ranging from 10 to 67 kb relative to the genome of Salmonella typhimurium LT2. These genomic features clearly distinguish S. Agona from other previously analyzed salmonellae and provide clues to the molecular basis for its genomic divergence. Additionally, these kinds of physical maps, combined with emerging high-speed sequencing technologies, such as the Solexa or SOLiD techniques, which require a pre-existing high-resolution physical map such as the S. Agona map reported here, will play important roles in genomic comparative studies of bacteria involving large numbers of strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.