Abstract

In this paper, we propose an algorithm called Directional Exploration Genetic Algorithm (DEGA) to resolve a function Phi over the efficient set of a multi-objective integer linear programming problem (MOILP). DEGA algorithm belongs to evolutionary algorithms, which operate on the decision space by choosing the fastest improving directions that improve the objectives functions and Phi function. Two variants of this algorithm and a basic version of the genetic algorithm (BVGA) are performed and implemented in Python. Several benchmarks are carried out to evaluate the algorithm's performances and interesting results are obtained and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.