Abstract

We report the genetic encoding of a noncanonical, spin-labeled amino acid in Escherichia coli. This enables the intracellular biosynthesis of spin-labeled proteins and obviates the need for any chemical labeling step usually required for protein electron paramagnetic resonance (EPR) studies. The amino acid can be introduced at multiple, user-defined sites of a protein and is stable in E. coli even for prolonged expression times. It can report intramolecular distance distributions in proteins by double-electron electron resonance measurements. Moreover, the signal of spin-labeled protein can be selectively detected in cells. This provides elegant new perspectives for in-cell EPR studies of endogenous proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.