Abstract

NADP+, the oxidized form of nicotinamide adenine dinucleotide phosphate, plays an essential role as a coenzyme in cellular electron transfer reactions. The concentration of NADP+ in cytoplasm or organelles is dynamic due to its conversion to many important derivatives. To track the NADP+ concentration in single living cells, we developed a genetically encoded NADP+ biosensor by inserting a reporter element, ketopantoate reductase (KPR), between the Förster resonance energy transfer (FRET) pair, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). This recombinant sensor showed a NADP+ concentration-dependent decrease in the fluorescence ratio in vitro assay. In order to optimize this biosensor, we performed peptide-length optimization and site-directed mutagenesis in the binding pocket of KPR guided by predictions from computational protein redesign. This modified biosensor showed a 70% Δratio increase compared to the wild type and was found to be highly specific to NADP+, with a detection limit of 1μM. The sensor also reported NADP+ real-time cellular dynamics in Escherichia coli (E. coli) after the addition of its precursor, nicotinic acid (NA). Altogether, these results demonstrate the feasibility of the biosensor for visualizing NADP+ both in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.