Abstract
In this paper,a genetic-algorithm-based artificial neural network(GAANN)model radioactivity prediction is proposed,which is verified by measuring results from Long Range Alpha Detector(LRAD).GAANN can integrate capabilities of approximation of Artificial Neural Networks(ANN)and of global optimization of Genetic Algorithms(GA)so that the hybrid model can enhance capability of generalization and prediction accuracy,theoretically.With this model,both the number of hidden nodes and connection weights matrix in ANN are optimized using genetic operation.The real data sets are applied to the introduced method and the results are discussed and compared with the traditional Back Propagation(BP)neural network,showing the feasibility and validity of the proposed approach.更多还原
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.