Abstract

A set of 64 mutants of Saccharomyces cerevisiae that confer sensitivity to X-ray inactivation were analyzed genetically to determine the number of genetic loci involved. The mode of interaction of various combinations of mutants was also determined. A minimum of 17 genes, when mutant, increase X-ray sensitivity of yeast, primarily by eliminating the resistance of budding haploid cells and by removing the shoulder on the survival curves of diploid cells. Eight mutant loci affect principally X-ray sensitivity while the remaining genes also control sensitivity to ultraviolet. Some of the genes when homozygous block sporulation or result in partial or complete sterility. Examination of the survival responses of multiple-mutant strains indicated a minimum of two pathways in the repair of X-ray damage. A number of the mutants have been mapped and these were found to be dispersed over the genome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.