Abstract
Mitotic chromosome condensation is a prerequisite for the accurate segregation of chromosomes during cell division, and the conserved condensin complex a central player of this process. However, how condensin binds chromatin and shapes mitotic chromosomes remain poorly understood. Recent genome-wide binding studies showing that in most species condensin is enriched near highly expressed genes suggest a conserved link between condensin occupancy and high transcription rates. To gain insight into the mechanisms of condensin binding and mitotic chromosome condensation, we searched for factors that collaborate with condensin through a synthetic lethal genetic screen in the fission yeast Schizosaccharomyces pombe. We isolated novel mutations affecting condensin, as well as mutations in four genes not previously implicated in mitotic chromosome condensation in fission yeast. These mutations cause chromosome segregation defects similar to those provoked by defects in condensation. We also identified a suppressor of the cut3-477 condensin mutation, which largely rescued chromosome segregation during anaphase. Remarkably, of the five genes identified in this study, four encode transcription co-factors. Our results therefore provide strong additional evidence for a functional connection between chromosome condensation and transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.