Abstract
Nutrient and oxygen availability are key metabolic parameters for biopharmaceutical manufacturing. In order to enable mammalian cells to manifest their intracellular nutrient and oxygen levels we engineered a genetic sensor circuitry which converts signals impinging on the cellular redox balance into a robust reporter gene expression readout. Capitalizing on the Streptomyces coelicolor redox control system, consisting of REX modulating ROP-containing promoters in an NADH-dependent manner, we designed a mammalian dual sensor transcription control system by fusing REX to the generic VP16 transactivation domain of Herpes simplex, which reconstitutes an artificial transactivator (REDOX) able to bind and activate chimeric promoters assembled by placing a ROP operator module 5′ of a minimal eukaryotic promoter (P ROP). When nutrient levels were low and resulted in depleted NADH pools REDOX-dependent P ROP-driven expression of secreted (human-secreted alkaline phosphatase; SEAP) or intracellular (Renilla reniformis luciferase; rLUC) reporter genes was high as a consequence of increased REDOX–P ROP affinity. Conversely, at hypoxic conditions leading to high intracellular NADH levels, strongly reduced REDOX–P ROP interaction mediated low-level transgene expression in Chinese hamster ovary (CHO-K1) cells. Other molecules (for example, 2,4-dinitrophenol, cyanide or hydrogen peroxide) which are known to imbalance the intracellular NADH/NAD + poise could also be detected using the REDOX–P ROP sensor circuitry. REDOX's sensor capacity (nutrient and oxygen levels) operated seamlessly in transgenic CHO-K1 cell derivatives adapted for growth in serum-free suspension cultures and enabled precise monitoring of the population's metabolic state. As the first genetic metabolic sensor designed for mammalian cells, REDOX may foster advances in process development and biopharmaceutical manufacturing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.