Abstract

As the major glucose-consuming organ in the human body, the dynamics of glucose metabolism in the brain deserve special attention. It has been shown that the brain's energy allocation as a percentage of the total energy budget of the individual peaks during childhood and declines through adolescence until reaching the stable allocation level seen in the adult. This pattern of glucose consumption has not been observed in other species, including our close primate relatives, and is therefore potentially either a driver or a consequence of human cognition. Furthermore, the allocation of glucose usage in the brain changes as the individual ages, with a surprising amount dedicated to glycolysis rather than oxidative phosphorylation pathway. This suggests that, at certain developmental stages, glucose-fuelled anabolic pathways, in addition to ATP generation, are the driving forces behind the brain's high energy requirement. In this study, we explore the most recent work pertaining to the dynamic glucose uptake and allocation of the developing human brain and investigate several genes that may play a role in regulating these processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.