Abstract
This paper presents the design and experimental implementation of a genetic fuzzy controller for automatic steering of a small-scaled vehicle. We first derive a dynamic model of the vehicle via system identification and show that the model exhibits similar characteristics to full-sized vehicles. Subsequently, a stable fuzzy proportional-derivative controller is designed and optimized by genetic algorithms. The control system is transformed into a Lureacute system, and Lyapunov's direct method is used to guarantee the stability of the control system. Experimental studies suggest that the control system is insensitive to parametric uncertainty, load, and disturbances. The performance of the proposed controller is also compared against a conventional proportional derivative (PD) controller. Experimental results confirm that it outperforms the conventional PD controller, particularly in terms of robustness
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.