Abstract

Abstract This paper proposes an evolving ant direction differential evolution (EADDE) algorithm for solving the optimal power flow problem with non-smooth and non-convex generator fuel cost characteristics. The EADDE employs ant colony search to find a suitable mutation operator for differential evolution (DE) whereas the ant colony parameters are evolved using genetic algorithm approach. The Newton–Raphson method solves the power flow problem. The feasibility of the proposed approach was tested on IEEE 30-bus system with three different cost characteristics. Several cases were investigated to test and validate the robustness of the proposed method in finding the optimal solution. Simulation results demonstrate that the EADDE provides superior results compared to a classical DE and other methods recently reported in the literature. An innovative statistical analysis based on central tendency measures and dispersion measures was carried out on the bus voltage profiles and voltage stability indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.