Abstract

In today’s competitive environment, agility and leanness have become two crucial strategic concerns for many manufacturing firms in their efforts to broaden market share. Recently, the build-to-order (BTO) manufacturing strategy is becoming a popular operation strategy to achieve both in a mass-scale customization process. BTO system combines the characteristics of make-to-order strategy with a forecast driven make-to-stock strategy. As a means to improve customer responsiveness, customized products are assembled according to specific orders while standard components are pre-manufactured based on short-term forecasts. Planning of the two subsystems using a two-phase sequential approach offers both operational and modeling incentives. In this paper, we formulate a two-phase mixed integer linear programming (MILP) model for material procurement, components fabrication, product assembly and distribution scheduling of a BTO supply chain system. In the proposed approach, the entire problem is first decomposed into two subsystems and evaluated sequentially. The first phase deals with assembling and distribution scheduling of customizable products, while the second phase addresses fabrication and procurement planning of components and raw-materials. The objective of both models is to minimize the aggregate costs associated with each subsystem, while meeting customer service requirements. The search space for the first phase problem involves a complex landscape with too many candidate solutions. A genetic algorithm based solution procedure is proposed to solve the sub-problem efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.