Abstract

We present a genetic algorithm for the multiple-choice integer program that finds an optimal solution with probability one (though it is typically used as a heuristic). General constraints are relaxed by a nonlinear penalty function for which the corresponding dual problem has weak and strong duality. The relaxed problem is attacked by a genetic algorithm with solution representation special to the multiple-choice structure. Nontraditional reproduction, crossover and mutation operations are employed. Extensive computational tests for dual degenerate problem instances show that suboptimal solutions can be obtained with the genetic algorithm within running times that are shorter than those of the OSL optimization routine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.