Abstract
This paper presents a genetic algorithmic approach to the shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation exchanges partial chromosomes (partial routes) at positionally independent crossing sites and the mutation operation maintains the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. This paper also develops a population-sizing equation that facilitates a solution with desired quality. It is based on the gambler ruin model; the equation has been further enhanced and generalized. The equation relates the size of the population, quality of solution, cardinality of the alphabet, and other parameters of the proposed algorithm. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types for almost all source-destination pairs. Furthermore, simulation studies emphasize the usefulness of the population-sizing equation. The equation scales to larger networks. It is felt that it can be used for determining an adequate population size in the SP routing problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.