Abstract

Searching spatial configurations is a particular case of maximal constraint satisfaction problems, where constraints expressed by spatial and nonspatial properties guide the search process. In the spatial domain, binary spatial relations are typically used for specifying constraints while searching spatial configurations. Searching configurations is particularly intractable when configurations are derived from a combination of objects, which involves a hard combinatorial problem. This paper presents a genetic algorithm (GA) that combines a direct and an indirect approach to treating binary constraints in genetic operators. A new genetic operator combines randomness and heuristics for guiding the reproduction of new individuals in a population. Individuals are composed of spatial objects whose relationships are indexed by a content measure. This paper describes the GA and presents experimental results that compare the genetic versus a deterministic and a local-search algorithm. These experiments show the convenience of using a GA when the complexity of the queries and databases do no guarantee the tractability of a deterministic strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.